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By now, hundreds (thousands?) of searches for new 
physics at the LHC.

No sign of new physics yet…
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99.9999% of the searches at the LHC are model-specific.

Are we covering every possibility?
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Why are there so few model independent 
searches at collider experiments? 

Why are they all following the same 
approach — comparing data to simulation?



details of the ANODE approach and provides a brief introduction to normalizing flows. The
reminder of the paper illustrates ANODE through an example based on a dijet search using
jet substructure. Details of the simulated samples are provided in Sec. ?? and the results for
the signal sensitivity and background specificity are presented in Sec. ?? and ??, respectively.
A study of correlations between the discriminating features and the resonant feature is in
Sec. ??. The paper ends with conclusions and outlook in Sec. ??.

2 An Overview of Model (In)dependent Searches

A viable search for new physics generally must have two essential components: it must be
sensitive to new phenomena and it must also be able to estimate the background under the
null hypothesis (Standard Model only). The categorization of a search’s degree of model
(in)dependence requires consideration of both of these components. Figure ?? illustrates how
to characterize model independence for both BSM sensitivity and SM background specificity.
We will now consider each in turn.
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Figure 1. A graphical representation of searches for new particles in terms of the background and
signal model dependence for achieving signal sensitivity (a) and background specificity (b). The Model
Unspecific Search for New Physics (MUSiC) [? ? ] and General Search [? ? ? ] strategies are
from CMS and ATLAS, respectively. LDA stands for Latent Dirichlet Allocation [? ? ], ANOmaly
detection with Density Estimation (ANODE) is the method presented in this paper, CWoLa stands
for Classification Without Labels [? ? ? ] and SALAD stands for Simulation Assisted Likelihood-free
Anomaly Detection [? ]. Direct density estimation is a form of side-banding where the multidimensional
feature space density is learned conditional on the resonant feature (see Sec. ??).
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in unsupervised ML since 2000.

Some challenges:

• Robust background estimation

• Quantifying performance

• Recasting?

These have inspired many new 
ideas for model-independent 
searches at the LHC recently!



Figure 6. A histogram of the classifier output for a neural network trained to distinguish ‘data’
(Pythia) and ‘simulation’ (Herwig) in the signal region.

Figure 7. The four features used for machine learning in the signal region, before and after applying
dctr: jet mass (top) and the N -subjettiness ratios ·21 (bottom) for the more massive jet (left) and
the less massive jet (right).
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Figure 1: The schematic diagram of an autoencoder. The input is mapped into a low(er) dimensional
representation, in this case 6-dim, and then decoded.

threshold.

For concreteness, we will focus in this work on distinguishing “fat” QCD jets from

other types of heavier, boosted resonances decaying to jets. Building on previous work

on top tagging [12], we will concentrate on machine learning algorithms that take jet

images as inputs. For signal, we will consider all-hadronic top jets, as well as 400 GeV

gluinos decaying to 3 jets via RPV. Obviously, this is not meant to be an exhaustive

study of all possible backgrounds and signals and methods but is just meant to be a

proof of concept. The idea of autoencoders for anomaly detection is fully general and not

limited to these signals. We will comment on other forms of inputs in section 5. Moreover

there are many other anomaly detection techniques that are not based on autoencoder

and/or on reconstruction (loss) which are worth exploring in future work. At the same

time autoencoders have been recently used in other high energy physics applications:

in parton shower simulation [28], for feature selection of a supervised classification [30],

and for automated detection of detector aberrations in CMS [31].

We will explore various architectures for the autoencoder, from simple dense neural

networks to convolutional neural networks (CNNs), as well as a shallow linear represen-

tation in the form of Principal Component Analysis (PCA). We will see that while they

are all e↵ective at improving S/B by factors of ⇠ 10 or more, they have important dif-

ferences. The reconstruction errors of the dense and PCA autoencoders correlate more

highly with jet mass, leading to greater S/B improvement for the 400 GeV gluinos com-

pared to the CNN autoencoder. While this may seem better at first glance, we discuss

how one might want to use an autoencoder that is decorrelated with jet mass, in order

to obtain data-driven side-band estimates of the QCD background and perform a bump

hunt in jet mass. Indeed, we show how cutting on the reconstruction error of the CNN

autoencoder results in stable jet mass distributions, and we show how this can be used

to improve S/B by a factor of ⇠ 6 in a jet mass bump hunt for the 400 GeV gluino

2

CWoLa Hunting
19

Application to Bump Hunt

In signal region:
S = 522,
S/B = 0.64%

2σ

3.8σ

4.2σ

7σ

4

Figure 1. (Upper plot) ROC curves for the LDA top jet tag-
gers compared to the DeepTop tagger [22, 23] (colored trian-
gles) for events with fat-jets satisfying pT 2 [350, 450] GeV.
The purple star represents the default JH top tagger [8] ref-
erence point. (Lower plot) ROC curves for the tt̄ LDA event
classifiers compared to the classifiers from the DeepTop (col-
ored triangles) and the JH top tagger (purple star). In both
plots the shaded bands represent the mean-average-deviation
extracted from the k-folding procedure. See text for details.

ous supervised taggers in the literature [8, 22, 23]. We
see that the taggers perform well and with relatively
small variance, with the supervised tagger performing
the best. An interesting observation is that at high
background rejection rates (1/✏b � O(few)) the taggers
trained on smaller S/B perform slightly better than the
tagger trained on the S/B = 1 sample, although the dif-
ferences are comparable to the estimated uncertainties.
This is essentially because the algorithm is designed to
discern features in the jet substructure, which are sub-
sequnetly used to tag jets and events. In the supervised
and S/B = 1 case the algorithm discovers features in
top jets both near mj0 ⇠ mt and mj0 ⇠ mW (see the
right plot in Fig. 2), while in the lower S/B cases the
algorithm is only able to identify mj0 ⇠ mt as relevant.

50 100 150 200 250

p(
m

j 0
|
t)

50 100 150 200 250

50 100 150 200 250
mj0 [GeV]

0.2

0.4

0.6

0.8

1.0

m
j 1
/m

j 0

0 0.008 0.016

50 100 150 200 250
mj0 [GeV]

0 0.006 0.012

Figure 2. 2D projected probability distributions (in the plane
of mj0 and mj1/mj0 ) of the two latent themes discovered
in mixed (S/B = 1) QCD and tt̄ event samples with fat-jets
satisfying pT 2 [350, 450] GeV.

On the other hand, lower mj0 regions generically feature
more prominently in QCD jets (see left plot in Fig. 2).
Thus, while a very accurate determination of the fea-
tures near mj0 ⇠ mW in the supervised case helps the
performance of the tagging algorithm, the worse resolu-
tion in the unsupervised S/B = 1 case leads to worse
tagging performance compared to lower S/B examples.
We see that the performance of the unsupervised taggers
is comparable to the original JH top tagger [8], although
it falls short in comparison to the others. We note that
the observables we use mostly match those used in the
JH top tagger, hence the similar performance is indeed
encouraging.

In Fig. 1 (lower panel) we plot the ROC curves for our
tt̄ event classifiers, where a single document now con-
tains all jets within the selected pT region in an event,
and again compare these to the top jet taggers in the
literature. To make the comparison with other taggers
fair, we re-scale those results by defining an event tag-
ging e�ciency (✏e) in terms of the jet tagging e�ciency
(✏j) and the fraction of events in our pure samples with
one (f1) and two (f2) jets passing the selection cuts3,
✏e = (2✏j � ✏2j )f2 + ✏jf1. This means in practice that
tagging an event as tt̄ requires at least one jet in the
event to be tagged as a top jet. The ROC curves do
not change significantly under this re-scaling, instead the
points move along a trajectory towards higher e�ciencies
approximately equal to that of the ROC curve for jet tag-
ging. We see again that the classifier performs very well
in all cases, performing as well as the JH top tagger even
for low S/B.

3 We have checked that the fractions of events with zero or more
than two jets passing the selection cuts are negligible.
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Figure 1. Schematic view of the proposed method to compute the p-value of the null hypothesis
that the two samples are drawn from the same probability density.

The test statistic defined in Eq. (2.5) is also equal to the estimated Kullback-Leibler

(KL) divergence D̂KL(p̂T ||p̂B) between the estimated PDFs of trial and benchmark samples,

with the expectation value replaced by the empirical average (see Appendix A and in

particular Eq. (A.2)). The KL divergence plays a central role in information theory and can

be interpreted as the relative entropy of a probability distribution with respect to another

one. Our choice is also motivated by the fact that the log function in Eq. (2.5) makes the

test statistic linearly sensitive to small di↵erences between the distributions. Of course,

other choices for the test statistic are possible, based on an estimated divergence between

distributions other than the KL divergence, e.g. the Pearson squared-error divergence. The

exploration of other possibilities is beyond the scope of this paper and is left for future

work.

Ultimately, we want to conclude whether or not the null hypothesis can be rejected,

with a specified significance level ↵ (e.g. ↵ = 0.05), therefore we need to associate a

p-value to the null hypothesis, to be compared with ↵. To this end, we first need to

estimate the PDFs p̂B,T from the samples, then compute the test statistics TSobs observed

on the two given samples. Next, in order to evaluate the probability associated with the

observed value TSobs of the test statistic, we need to reconstruct its probability distribution

f(TS|H0) under the null hypothesis H0, and finally compute a two-sided p-value of the null

hypothesis.

The distribution of the test statistic is expected to be symmetric around its mean (or

median), which in general may not be exactly zero as a finite-sample e↵ect. Therefore, the

two-sided p-value is simply double the one-sided p-value.

A schematic summary of the method proposed in this paper is shown in Figure 1. In

the remainder of this section we will describe this procedure in detail.
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Autoencoders
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Probabilistic Modeling
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Figure 4. Scatter plot of R(x|m) versus log pbackground(x|m) across the test set in the SR. Background
events are shown (as a two-dimensional histogram) in grayscale and individual signal events are shown
in red.

Figure 5. Left: Histogram of R(x|m) evaluated on the test set; Right: the integrated number of
events that survive a threshold on R(x|m). The two distributions are scaled to represent the rates for
500,000 total background events and 500 total signal events, as introduced in Sec. 4.

to have the same number of events as each other and in total, the same as the SR. A single NN
with four hidden layers with 64 notes each is trained using Keras [120] and TensorFlow [121].
Dropout [122] of 10% is used for each intermediate layer. Intermediate layers use rectified
linear unit activation functions and the last layer uses a sigmoid. The classifier is optimized
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This is just the 
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A Benchmark Example
LHC Olympics 2020 R&D Dataset
https://doi.org/10.5281/zenodo.2629072
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No explicit search at the LHC for this scenario.

Could be hiding in the dijet resonance search at >5sigma significance!!


